DC IR-Drop Analysis of Power Distribution Networks by a Robin Transmission Condition-Enhanced Discontinuous Galerkin Method
نویسندگان
چکیده
In this work, a novel Robin transmission condition (RTC)-enhanced discontinuous Galerkin (DG) method is proposed for the dc IR-drop analysis of power distribution networks with Joule heating effects included. Unlike conventional DG method, straightforwardly applied to discretize second-order spatial partial differential governing equations electrostatic potential $\Phi $ and steady-state temperature notation="LaTeX">$T$ . The numerical flux in used facilitate information exchange among neighboring subdomains introduces two additional variables: current density notation="LaTeX">$J$ electrical equation thermal notation="LaTeX">$q$ equation. To solve them, at interface subdomains, an RTC presented as second establish another connection solutions subdomains. With strategy, number degrees freedom (DoFs) involved RTC-DG dramatically reduced compared traditional method. finalized matrix system solved finite-element tearing interconnecting (FETI)-like procedure, namely unknowns are obtained subdomain-by-subdomain scheme. Finally, accuracy efficiency validated by several representative examples.
منابع مشابه
fault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
A multilevel discontinuous Galerkin method
A variable V-cycle preconditioner for an interior penalty finite element discretization for elliptic problems is presented. An analysis under a mild regularity assumption shows that the preconditioner is uniform. The interior penalty method is then combined with a discontinuous Galerkin scheme to arrive at a discretization scheme for an advection-diffusion problem, for which an error estimate i...
متن کاملA Multiscale Discontinuous Galerkin Method
We propose a new class of Discontinuous Galerkin (DG) methods based on variational multiscale ideas. Our approach begins with an additive decomposition of the discontinuous finite element space into continuous (coarse) and discontinuous (fine) components. Variational multiscale analysis is used to define an interscale transfer operator that associates coarse and fine scale functions. Compositio...
متن کاملAnalysis of a Discontinuous Galerkin Method for Koiter Shell
Abstract. We present an analysis for a mixed finite element method for the bending problem of Koiter shell. We derive an error estimate showing that when the geometrical coefficients of the shell mid-surface satisfy certain conditions the finite element method has the optimal order of accuracy, which is uniform with respect to the shell thickness. Generally, the error estimate shows how the acc...
متن کاملMaximum IR-Drop in On-Chip Power Distribution Networks of Wire-Bonded Integrated Circuits
A compact IR-drop model for on-chip power distribution networks in wire-bonded ICs is presented. Chip dimensions, metal coverage and piecewise distribution of the IC consumption are taken into account to obtain closed form expressions for the maximum IR-drop as well as its place. Comparison with simulations shows an error as small as 2% in most the cases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Components, Packaging and Manufacturing Technology
سال: 2022
ISSN: ['2156-3950', '2156-3985']
DOI: https://doi.org/10.1109/tcpmt.2021.3131513